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Abstract

This study evaluated in vivo imaging capabilities and safety of qualitative monitoring of oxygen 

saturation of hemoglobin (sO2) of rabbit ciliary body tissues obtained with acoustic resolution 

(AR) photoacoustic tomography (PAT). AR PAT was used to collect trans-scleral images from 

ciliary body vasculature of seven New Zealand White rabbits. The PAT sO2 measurements were 

obtained under the following conditions: when systemic sO2 as measured by pulse oximetry was 

between 100% and 99% (level 1); systemic sO2 as measured by pulse oximetry was between 98% 

and 90% (level 2); and systemic sO2 as measured by pulse oximetry was less than 90% (level 3). 
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Following imaging, histological analysis of ocular tissue was conducted to evaluate for possible 

structural damage caused by the AR PAT imaging.

AR PAT was able to resolve anatomical structures of the anterior segment of the eye, viewed 

through the cornea or anterior sclera. Histological studies revealed no ocular damage. On average, 

sO2 values (%) obtained with AR PAT were lower than sO2 values obtained with pulse oximetry 

(all p<0.001): 86.28±4.16 versus 99.25±0.28, 84.09±1.81 vs. 95.3±2.6, and 64.49±7.27 vs. 

71.15±10.21 for levels 1, 2 and 3 respectively. AR PAT imaging modality is capable of qualitative 

monitoring for deep tissue sO2 in rabbits. Further studies are needed to validate and modify the 

AR PAT modality specifically for use in human eyes. Having a safe, non-invasive method of in 

vivo imaging of sO2 in the anterior segment is important to studies evaluating the role of oxidative 

damage, hypoxia and ischemia in pathogenesis of ocular diseases.
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Introduction

Numerous studies have identified oxidative damage as an important event in the 

pathogenesis of ocular diseases such as macular degeneration (Kinnunen et al., 2011), 

cataract (Varma et al., 2011), and glaucoma (Abu-Amero et al., 2006; Alvarado et al., 1981; 

Chang, 2006; Chen and Kadlubar, 2003; Ferreira et al., 2004; Gabelt and Kaufman, 2005; 

Holekamp et al., 2005; Izzotti et al. 2003; Izotti et al., 2006; Izzotti et al., 2009; Kong et al, 

2009; Liton et al., 2009; Sacca et al., 2005; Sacca et al., 2007; Sacca and Izzotti, 2008; Shui 

et al, 2006; Siegfried et al, 2010; Tomarev, 2001; Wang et al, 2001; Zhou and Yue, 1999). 

Two important hemodynamic parameters of oxygen metabolism include oxygen partial 

pressure (pO2) and oxygen saturation of hemoglobin (sO2). pO2 represents the amount of 

free oxygen concentration available to cells. sO2 represents the amount of oxygen carried by 

hemoglobin. The relationship between pO2 and sO2, referred as the hemoglobin oxygen 

dissociation curve, describes how blood carries and releases oxygen for tissue metabolism 

under physiological and pathological conditions (Wang, 2008). We demonstrated that re-

distribution of oxygen in the anterior segment following vitrectomy and cataract surgery 

leads to increased pO2 in the posterior chamber (PC) and anterior chamber (AC) angle, 

which is potentially damaging to the trabecular meshwork cells. Hence, measuring pO2 in 

the PC and AC angle may identify eyes at risk for development of glaucoma (Holekamp et 

al., 2005; Shui et al., 2006; Siegfried et al., 2010).

Since sO2 and pO2 are related, it is reasonable to postulate that sO2, similar to pO2 may play 

an important role in early diagnosis of glaucoma. A novel powerful optical imaging 

modality called photoacoustic tomography (PAT) is capable of non-invasive in vivo imaging 

of intra-vascular total hemoglobin concentration (HbT) and sO2 (de la Zerda et al., 2010; 

Hoelen et al., 1998; Hu et al., 2010; Jiao et al., 2009; Jiao et al., 2010; Jiang et al., 2010; 

Kong et al., 2009a; Kong et al., 2009b; Maslov et al., 2008; Rao et al., 2010; Rosencwaig, 

1982; Silverman et al., 2010; Song et al., 2013; Wang et al., 2003; Wang et al., 2006; Wang 
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and Wu, 2007; Wang, 2008; Wang et al., 2011; Xie et al., 2009; Xing et al., 2013; Yao and 

Wang, 2011; Zhang et al., 2006; Zhang et al., 2007; Zhang et al., 2010; Zhang et al., 2010).

In addition to measuring sO2, PAT can also provide structural imaging at a higher resolution 

than coherence tomography (OCT) and deeper penetration than ultrasound (US). Because 

OCT relies on ballistic photon detection, the penetration depth is limited to ∼1 mm in 

biological tissue due to high optical scattering. On the contrary, US has very small scattering 

in the soft tissue, and thus it has deeper tissue penetration but lower resolution than OCT 

(Kong et al., 2009a; Yao and Wang, 2011). PAT overcomes limitations of OCT and US. 

Thus, deep embedded structures (such as ocular tissue in the rabbit eye) can be successfully 

detected by PAT.

PAT obtains in vivo cross-sectional three-dimensional high-resolution structural, functional, 

and molecular images by utilizing the photoacoustic effect discovered by Alexander G. Bell 

in 1880 (Yao and Wang, 2011). When tissue is irradiated by a laser beam, locally absorbed 

light is converted into heat. The heat causes thermoelastic expansion of the tissue and rise in 

pressure. The pressure rise propagates in the tissue as an ultrasonic wave, also known as a 

photoacoustic wave. The photoacoustic wave is detected by ultrasonic transducers that 

convert it into electrical signals. The electric signals are amplified, digitalized, and analyzed 

by a computer to form images (Wang, 2008). Because the amplitude of the photoacoustic 

wave is proportional to the energy absorbed by the object, multiple optical wavelengths can 

be used in PAT to provide spectral information of optical absorption. In addition, because 

oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin (Hb) have different 

absorption spectrum, sO2 can be successfully measured by PAT with high accuracy and high 

spatial resolution (Wang, 2008). PAT can operate in two modes: optical resolution and 

acoustic resolution. Optical resolution PAT is useful for imaging of blood vessels near the 

surface and acoustic resolution (AR) PAT is more effective in imaging at greater depth.

The goal of this study was to evaluate imaging capabilities and safety of in vivo qualitative 

monitoring of oxygen saturation of hemoglobin (sO2) of rabbit ciliary body tissues obtained 

with AR PAT technique.

Methods

All experimental animal procedures were approved by the Institutional Animal Care and Use 

Committee of Washington University in St. Louis and adhered to the EU Directive 

2010/63/EU for animal experiments. This pilot study involved 7 adult New Zealand White 

rabbits. The rabbits were anesthetized with a combination of ketamine:xylazine (15mg/kg:

2mg/kg) intramuscularly, intubated, ventilated, and maintained on isoflurane gas throughout 

the imaging procedure. Using AR PAT we imaged the same area of the anterior segment of 

one eye of each rabbit three times. The signals from ciliary body blood vessels were 

analyzed to calculate the averaged absolute sO2. Volume imaged was 2.6 × 105 um3.

To confirm the ability of the AR PAT imaging to respond to changes in ocular HbT and sO2 

among various conditions, the PAT sO2 measurements were obtained under following the 

conditions: systemic sO2 as measured by pulse oximetry between 100% and 99% (level 1); 

Hennen et al. Page 3

Exp Eye Res. Author manuscript; available in PMC 2018 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



systemic sO2 as measured by pulse oximetry between 98% and 90% (level 2); and systemic 

sO2 as measured by pulse oximetry less than 90% (level 3). We intentionally modified the 

percentage of oxygen in the inspired to achieve these different sO2 levels. In this study we 

wished to demonstrate a qualitative ability of AR PAT to monitor increases and decreases in 

tissue saturation thus high levels of oxygen in the inspired gas was used. Systemic sO2 was 

monitored by pulse oximetry. A clamp-type pickup was used on the animal's back paw. In 

order to determine if tissue damage was produced by the laser exposure we conducted 

histological studies. We included 4 rabbits with various life endpoints after AR PAT imaging 

experiments: 30 minutes (one rabbit); one day (one rabbit); and one week (two rabbits). The 

cornea, iris, trabecular meshwork, lens, choroid, vitreous, and retina of all animals were 

evaluated histologically using light microscopy and hematoxylin and eosin staining for any 

possible structural damage caused by the AR PAT imaging due to laser light. The contra-

lateral non-imaged eyes were used as controls.

AR PAT modality

Schematics of AR PAT used in the experiment are shown in Figure 1. A tunable dye laser 

(Sirah) pumped by a 523-nm-wavelength Nd:YLF laser (EdgeWave) was used for sound 

excitation. Rhodamine 6G was chosen as the dye to provide tunable wavelength from 560 

nm to 580 nm with a pulse width around 5 ns. The laser beam was delivered to the scanning 

stage via 600 μm core diameter multimode optical fiber (Thorlabs). Emerging out of the tip, 

the light was ring shaped by a conical lens, passed around a 1/4″ diameter, 8mm focal 

length, 20 MHz ultrasonic transducer (Panametrics Inc., model V212-BB-RM), and weakly 

focused into the sample by an optical condenser. The incident fluence on the tissue surface 

was estimated to be about 5 mJ/cm2, which was less than the safety limit set by the 

American National Standard Institute (ANSI) (20 mJ/cm2). A focused ultrasonic transducer 

was immersed in a water tank. The bottom of the water tank was a layer of 25 μm LDPE 

membrane closely attached to the sample and acoustically coupled by ultrasonic gel. During 

raster scanning along the sample surface the electrical signal from the ultrasonic transducer 

was collected, amplified, digitized, and transferred to computer to form 3D images. A part of 

the laser pulse was directed to the photodiode used to account for the energy variations of 

the laser pulses.

Taking into account that amplitude of the photoacoustic signal is proportional to the local 

optical absorption coefficient, the relative oxy- and deoxy-hemoglobin concentrations can be 

estimated by solving the following equations:

where μa(λ1) and μa(λ2) are absorption coefficients of the blood at two wavelengths; ε and 

C are the molar extinction coefficients and concentrations, respectively; ox and de refer to 
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oxy- and deoxyhemoglobin, respectively. The oxygen saturation of hemoglobin can be 

obtained as following:

In each imaging procedure, two wavelengths, 578 nm or 563 nm, were chosen to 

differentiate Hb and HbC2. Although wavelength dependent scattering could cause errors in 

calculating the sO2 values, wavelengths we used were very close. Therefore the difference in 

path length was negligible. Thus, there was no need for a calibration factor (Zhang et al, 

2006). Wavelengths were switched between b-scans (cross-sectional image) and the 

acquisition rate of each b-scan was 2 Hz. The system spatial resolutions, determined by the 

ultrasonic transducer, were about 70 urn in the lateral direction and 54 urn in the axial 

direction, both smaller than the dimension of ciliary body. To ensure that we detected signal 

solely from the ciliary body we only chose only that area for analysis. Since we selected AR 

PAT to work at greater depth, this lead to loss of resolution of the individual vessels. 

Therefore, instead of measuring sO2 from a single blood capillary, we calculated an average 

value from all blood vessels in the measured area based on the PAT detection.

Results

We were able to successfully resolve the anatomy of the anterior segment of the rabbit eye 

including iris, ciliary body, and anterior choroid (Figure 2). Histological evaluation using 

light microscopy and hematoxylin and eosin stains demonstrated no laser damage to the 

ocular tissue up to one week following AR PAT imaging (Figure 3). In the non-survival 

experiments, on average, sO2 values obtained with AR PAT were lower than sO2 values (%) 

obtained with pulse oximetry (all p<0.001): 86.28±4.16 versus 99.25±0.28, 84.09±1.81 vs. 

95.3±2.6, and 64.49±7.27 vs. 71.15±10.21 in the settings of: oxygen percentage in breathing 

gas between 99% and 100% (level 1); oxygen percentage in breathing gas between 90% and 

98% (level 2); and oxygen percentage in breathing gas less than 90% (level 3) respectively 

(Figure 4).

Discussion

The current study demonstrated that AR PAT imaging can successfully, non-invasively, and 

safely resolve the anatomy of the anterior segment of the eye. The laser energy was carefully 

controlled and focused towards the sclera in order to avoid direct exposure of the lens and 

retina. Further protection such as application of a contact lens covering the iris is possible.

We also demonstrated that AR PAT can qualitatively monitor the sO2 change in blood 

vessels of the ciliary body. We found that sO2 qualitative monitoring obtained with AR PAT 

yielded values that were significantly lower than sO2 measurements obtained with pulse 

oximetry. These results would be expected since systemic pulse oximetry only measures 

arterial sO2 whereas AR PAT calculates an average value from both arterial vessels (that 

have high oxyhemoglobin concentration hence high sO2) and venous vessels, which contain 
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both oxyhemoglobin and deoxyhemoglobin resulting in lower overall sO2. Further, due to 

imaging of deep tissue AR PAT couldn't resolve individual vessels. Instead it qualitatively 

monitored an averaged sO2 of the entire vascular bed. A reliable qualitative monitoring with 

ranges that correlate with hyperoxia, normoxia and hypoxia would be especially valuable for 

early detection and monitoring of the conditions that affect tissue saturation. Our study 

showed that AR PAT is a promising method for qualitative monitoring of the deep tissue, 

which also might be useful for monitoring oxidative damage studies in eyes.

Our technique should work similarly in pigmented animals or humans. Because our AR PAT 

system has high spatial resolutions, the pigment would not interfere with the sO2 imaging of 

deeply embedded ocular vasculatures. However, we would have to consider changing the 

imaging wavelengths to avoid strong attenuation due to the pigments. For an example, for a 

melanin-rich sample, a longer wavelength would be used, because melanin has smaller 

absorption at longer wavelength.

Previously we performed PAT imaging of rat brains in vivo under normoxic, hyperoxic, and 

hypoxic conditions. We successfully demonstrated simultaneous assessment of the blood 

volume, HbT, and sO2 of the cerebral vasculature (Wang et al., 2006). We recently 

developed a dual-modality microscope integrating PAT and fluorescence confocal 

microscopy (FCM) that can simultaneously image sO2 and pO2 in vivo in a single blood 

vessel (Wang et al., 2011). Other investigators demonstrated the ability of PAT to 

successfully image blood distribution in live rats and rabbits (de al Zerda et al., 2010; Jiang 

et al., 2010; Xie et al., 2009; Zhang et al., 2010a). We previously demonstrated the 

feasibility of PAT imaging of microvasculature of the ear, brain, and skin (Maslov et al., 

2008; Rao et al., 2010; Zhang et al., 2006). PAT is also capable of evaluating the metabolic 

rate of oxygen (MRO2). Although other modalities can also evaluate MRO2, they have 

limitations. Magnetic resonance imaging only detects temporal changes in hemoglobin 

concentration. Positron emission tomography requires exogenous radioactive tracers to 

image MRO2 (Yee et al., 2006). Diffuse optical tomography has low spatial resolution 

(Culver et al., 2003). In contrast, PAT has a potential to become a single modality to image 

in vivo MRO2, blood vessels and other structures of interest, and estimate blood flow 

without exogenous contrast (Wang, 2008). Currently, MRO2 measurements can't be obtained 

in the AR PAT system because of its limited detection of flow rate. However a new cross-

correlation based method which measures blood-flow velocity by using photoacoustic 

microscopy may achieve in vivo deep flow monitoring by increasing the detection time and 

thus providing a potential solution for MRO2 measurement (Liang et al, 2013; Zhou et al, 

2013).

The eye has an abundance of endogenous contrasts such as hemoglobin, melanin, and 

vascular tissue. All can be readily quantified and imaged by the PAT technique (de la Zerda 

et al., 2010; Hu et al., 2010; Jiao et al., 2010; Jiang et al., 2010; Rao et al., 2010; Silverman 

et al., 2010; Song et al., 2013; Xie et al., 2009; Zhang et al., 2010a; Zhang et al., 2010b). 

PAT imaging of ex vivo sectioned pig eyes demonstrates that using focused laser beam short 

pulse irradiation with a ring ultrasonic transducer provides sharper ocular images than an 

unfocused laser (Kong et al., 2009a). Laser with 1064 nm near infra-red wavelength 

provides better penetration but lower sensitivity than laser with 532 nm green wavelength, 
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which provides shaper images of cornea, lens surface, iris, ciliary body, and zonules 

(Silverman et al., 2010). We previously demonstrated the capability of PAT to image the 

microvasculature of the iris (Hu et al., 2010; Rao et al., 2010). Other investigators evaluated 

OCT guided PAT (Jiao et al., 2010; Song et al., 2013) and laser-scanning optical-resolution 

PAT for retinal vasculature imaging and adaptive optics PAT to image single retinal pigment 

epithelium cells (Jiang et al., 2010; Xie et al., 2009). In the current study, we successfully 

imaged and resolved sO2 in the ciliary body of the rabbit eye with AR PAT.

Our pilot study has limitations. Due to strong scleral scattering, we used AR PAT (Zhang et 

al., 2006) in the experiment. The lateral resolution of AR PAT is 80 microns, which is larger 

than the diameter of microvasculature, so it is not possible to resolve individual blood 

vessels with a diameter less than 80 microns. However, the system can integrate the optical-

resolution capability to get deep vessel images of the ciliary body (Xing et al., 2013). 

Because the laser only has an 1 kHz repetition rate, there were strong motion artifacts, which 

reduced current measurement accuracy. In the future, a video-rate AR PAT system can be 

employed to increase the monitoring speed and thus decrease motion artifacts (Wang et al, 

2012). And last but not least our study did not demonstrate the accuracy of AR PAT's sO2 

values. Future studies involving tissue phantoms would help to determine the accuracy of 

sO2 values obtained with AR PAT.

Despite these limitations, our pilot study found that the AR PAT imaging modality is capable 

of obtaining non-invasively in vivo sO2 qualitative monitoring correlated with pulse 

oximetry under various oxygen blood levels in rabbits. Further studies are needed to validate 

and modify the PAT modality specifically for ophthalmic use. Safe, non-invasive in vivo PAT 

imaging of the anterior segment and, potentially, the posterior segment of the eye, would be 

useful for evaluating the role of oxidative damage, hypoxia and ischemia in pathogenesis of 

various ocular diseases such as glaucoma, diabetic retinopathy, age-related macular 

degeneration and cataract.
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Highlights

1. We used acoustic resolution (AR) photoacoustic tomography (PAT) and pulse 

oximetry

2. sO2 was measured in rabbit ciliary body tissue

3. AR PAT sO2 were lower than SPO sO2 values

4. Further studies are need to validate our initial results
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Figure 1. 
(a) Schematic of the acoustic-resolution (AR) – photoacoustic microscopy (PAM) system. 

AL=acoustic lens; CL=conical lens; OF=optical fiber; OC=optical condenser; 

UT=ultrasound transducer; WT=water tank. (b) Photograph of the system in place
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Figure 2. 
Photoacoustic image of rabbit eye. (a) and (b) Images of eye from a different angle. 

C=Cornea; CB=ciliary body; CJ=Conjunctiva; CR=Choroid; I=Iris; S=Sclera.
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Figure 3. 
Histological evaluation using light microscopy and hematoxylin and eosin stains: (a). Ciliary 

body imaged with photoacoustic tomography (PAT); (b). Control ciliary body; (c). Retina 

imaged with PAT; (d). Control retina.
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Figure 4. 
Oxygen saturation (sO2) qualitative monitoring of rabbit ciliary body vasculature obtained 

by photoacoustic tomography (PAT) under the following conditions: systemic sO2 as 

measured by pulse oximetry between 100% and 99% (level 1); systemic sO2 as measured by 

pulse oximetry between 98% and 90% (level 2); and systemic sO2as measured by pulse 

oximetry less than 90% (level 3). Red dashed line: systemic sO2measured by pulse oximeter. 

Blue solid line: sO2 qualitative monitoring by PAT. (a) Time trace of sO2 qualitative 

monitoring. (b) sO2 mean value and corresponding standard deviations of sO2 in those 

conditions. Systemic pulse oximetry values are plotted on axis Y.
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